
Rendering maps
without Database

Thomas Skowron

Previously
(if you happen to speak German)

„Überblick über
Rendering-Techniken

und Software“
FOSSGIS-Konferenz 2017

„Pipelinebasierte
Erzeugung von

Karten“
FOSSGIS-Konferenz 2018

Turning OSM Data into a
graphical map

Bitmap/Vector Tiles,
Maps with larger extent, …

State of the art

OSM Planet

PostgreSQL

Renderer

Bottleneck

Bottleneck

Bottleneck

Awesome, powerful
stuff

PostgreSQL

Do we really need all of that stuff?

+ SQL
+ ACID, MVCC & transactions
+ Indexes
+ Role permission management
+ scriptable
+ fail over
+ …

- Performance (PostGIS)
- operational cost
- memory consumption

Attempts to improve 
the situation…

OSM Planet

PostgreSQL

Vector File “Renderer“

Bottleneck

Bottleneck

Bottleneck

Client Based Renderer

Pre-rendered Vector
Tiles

Client Based Renderer

All features
already
baked in,
flexibility
mostly gone

Alternative Approaches

tippecanoe

OSM File

mbtiles vector tile set

Clever features to keep
vector tiles small

has a gazillion of options

still very limited to filtering

Tilemaker

flexibility through
lua scripting

not scalable to
larger extracts

But why does one tool needs
to do everything?

Generally, we are all doing
almost the same stuff.

Step 1

Convert OSM data into geo data

Step 2

Filter

Step 3

Transform/map data

Step 4

Convert into target format

Suggestion:
parse | map-reduce | render

But how?

With Tools, which each do
one thing well

and a
portable data format

Let’s do Shapefiles!

Let’s do Shapefiles!

Let’s do OSMPBF!

Let’s do OSMPBF!

What does a
suitable file format need?

Performance
linear writes, parallelizable reads

Scalable
small to huge data sets

Tag structures
No tables no more!

Future proof
adaptable to change

Shapefile

Performance moderate

Scalable no, 2 GB size limit

Tag Strucutre no

Future Proof no

GeoJSON

Performance moderate

Scalable moderately, single threaded

Tag Structure yes

Future Proof limited

GeoPackage

Performance bad (SQLite)

Scalable moderately

Tag Structure yes

Future Proof yes

Performance

Flexibility

We need something new
There is no progress without change

How would a new
file format look like?

• binary
• blocks, streamable
• single stream, not multiple files
• not SQLite
• not overly obscure
• open and extendable

Suggestion

Based on
Protocol Buffers and WKB

Open Spec on 
https://thomas.skowron.eu/spaten/

Reference implementation in Go
github.com/thomersch/grandine/lib/spaten

http://github.com

Around 50% smaller than
GeoJSON*

* YMMV

Version 0

Feedback and Ideas
are welcome

What could we do with it?

grandine-spatialize -in planet.osm.pbf -mapping roads.yml |
grandine-tiler -out tiles/roads/ -zoom 14

osmium export -f spaten planet.osm.pbf |
gradine-converter -mapping roads.yml |

grandine-tiler -out tiles/roads/ -zoom 14

(not yet)

osmium export -f spaten planet.osm.pbf |
your-tool-here -fancify |

magic-renderer

(not yet)

Interchangeable tools

Future

Greater flexibility with less
programming work

Faster processing with
less hardware

Less points of failure

There is still lots to do
Data format, tools, markup, …

Let’s build the future
together!

And now let’s discuss!

